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Flexible gridding has the potential of increasing the accuracy in numerical simulation of 
flow through hydrocarbon reservoirs within limitations in computing time and memory space. 
The adaptive gridding method presented here follows general concepts outlined by Brandt 
(Math. Comput. 31, 333 (1977)). The pressure equation is discretised on locally refined grids 
with mixed finite elements. A multi-grid solution method is stated for the (indefinite) set of 
equations in the pressure and its gradient (or flow). A proof of convergence of the multi-grid 
process is given and convergence rates are discussed. The method has been tested on a set of 
equations representative for reservoir simulation. Results obtained for a five spot example are 
shown. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The computational work in numerical simulation of fluid flow in hydrocarbon- 
reservoirs is composed of two parts: 

(a) The flash calculations. These are evaluations of thermodynamic 
equilibrium between fluid components and require the solution of a set of (strongly) 
non-linear algebraic equations. 

(b) The transport calculations. These consist of the solution of the conser- 
vation equations which govern the motion of fluid through the reservoir and form a 
coupled system of partial differential equations; where elliptic (or, for compressible 
fluids, parabolic) and hyperbolic types occur simultaneously. 

The choice of a computational method is strongly influenced by the possible 
occurrence of (saturation) shocks propagating through the reservoir. Combining 
the need for an accurate approximation of these moving features with the need to 
economise on computational work points to a numerical method based on adaptive 
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“SHELL” Transport and Trading Company p.1.c. nor any company of the Royal Dutch/Shell Group will 
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to one or more such companies as the context may require. 

140 
0021-9991/88 53.00 
Copyright 0 1988 by Acadcmac Press, Inc. 
All rights of reproduction m  any lonn reserved. 



ADAPTIVE LOCAL GRID REFINEMENT 141 

local mesh refinement. Local refinement clearly reduces the work in (a), as com- 
pared with regular grids. On the other hand, the work in (b), which consists mainly 
of the solution (at each timestep) of the large set of (linear) equations representing 
the discretisation of the elliptic part, can be performed more efficiently on regular 
grids than on locally refined grids. 

Regularity and local refinement are optimally balanced in the method outlined by 
Brandt [5]. Here locally refined grids are effected by dynamically “switching on 
and off’ the individual grid points in a regular grid structure. On such grids the 
equations in (b) can be solved efficiently by the multi-grid technique. 

Use of the IMPEC (implicit in pressure, explicit in components) time dis- 
cretisation of the transport equations allows, to some degree, separate treatment of 
the elliptic or parabolic (pressure) equation and the hyperbolic (component) 
equations. The moving features that require dynamic local refinement are dictated 
by the hyperbolic part. Since we use one discretisation grid for all fields, the locally 
refined grid is used in the elliptic part too. In this paper we describe a solution 
method for the elliptic part, which suits the locally relined grid with respect to 
datastructure and computational efficiency. 

In order to keep the data structure on the locally refined grid manageable, the 
approximation of the fields are taken of low order. Low-order approximation can 
be consistent only if the differential equations that are discretised are of low order 
too. Therefore we write the elliptic part as a set of first-order differential equations 
and approximate with the lowest order mixed finite elements of Raviart and 
Thomas [ 131. The advantage of the mixed finite element approximation, notably 
the direct approximation of the flow field, has already been demonstrated for reser- 
voir simulation in [7-lo]. The combination of mixed finite elements with local 
refinement distinguishes the approach in this paper from these applications and 
from other methods with local refinement [2,3, 111. 

The set of equations resulting from the mixed finite element approximation is not 
positive-definite. We present a multi-grid method for its solution. Convergence of 
this multi-grid process is proved. Numerical results show convergence rates com- 
parable with rates of multi-grid methods for the positive-definite discretisation of 
the pressure equation, as reported in, e.g., [ 1,4, 6, 121. 

The elliptic and hyperbolic equations give rise to different strategies for 
(un)retining the grid. Numerical results show that, for the type of grids used here, 
relatively simple strategies suffice. 

All numerical results were obtained with a prototype reservoir simulator, based 
on very simple flash calculations. The paper is restricted to two space dimensions, 
but extending the ideas to three dimensions is straightforward. 

2. THE EQUATIONS OF RESERVOIR SIMULATION 

In this section we state the basic equations underlying the prototype simulator, 
for which numerical results are given in the final section. The equations model 
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incompressible multi-phase flow. We also use them to illustrate the IMPEC scheme 
and the split into an hyperbolic and an elliptic part. The equations are 

~=q”-VU” n = 1, . . . . N (2.la) 

U” = -k,Vp n = 1, . . . . N (2.lb) 

nQn=l (2.lc) 

for x = (x, y) in a fixed domain Q and t 2 0. The primary unknowns are: 
saturations s,, flows un (n = 1, . ..) N), and pressure p. The source terms qn will be 
assumed to be known (rate-constrained wells) and the permeabilities k, are given 
functions of the saturations and the space-coordinates. Though this approach 
allows the permeabilities to be tensors, here we assume them to be scalars. Initial 
saturations are given 

s,=.Y; t=O,n=l,...,N (2.2) 

and at the boundary no-normal-flow conditions hold: 

u”.v=O x E asz, n = 1, . ..) N, (2.3) 

where v is the unit outward normal. 
Introducing 

N 
u= 1 u”; k= 2 k,; 4= f 4n3 (2.4) 

where k is supposed to be positive-definite, we can write (2.1) as: 

as, x=q.-Vu” n = 1, . . . . N, (2.5a) 

u”=k,k-iu n = 1, . . . . N, (2.5b) 

vu=q (2.5~) 

Vp+k-‘u=O. (2.5d) 

Equations (2.5a), (2.5b) form the hyperbolic part, and (2.5c), (2.5d) form the 
elliptic part. There is coupling only through the occurrence of the total flow u in the 
hyperbolic part, and of the saturations (via the total permeability k) in the elliptic 
part. 

The numerical discretisation of system (2.5) starts with the introduction of a class 
of grids in Section 3. Discretisation of the elliptic part on a fixed grid and its 
solution by a multi-grid method are the subjects of Sections 4 and 5. The dis- 
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cretisation of the hyperbolic part is “one-point-upstream.” It is given in Section 6, 
where the grid-updating is analysed. 

For compressible flow, Eqs. (~SC), (2Sd) become of parabolic character, since a 
term c +/at (with c > 0) appears in the left-hand side of (2.5~). We include com- 
pressibility in the discussion of the multi-grid method, although numerical results 
will be presented only for c = 0. 

3. GRIDS AND DATA STRUCTURE 

In this section we define the class of grids that will be used, outline how field 
quantities discretised on these grids are stored, and introduce pointers needed to 
code a computer program. 

The coarsest grid in the class is fixed during simulation time and consists of a rec- 
tangular, possibly not equidistant, grid with interfaces parallel to the x- and y-axes 
of a Cartesian coordinate system. The total class of grids consists of this coarsest 
grid and all grids that can be obtained from it by the basic refinement, which refines 
one block into four identical smaller ones (see Fig. 1). 

All blocks and interfaces in the coarsest grid have feveZ one and the basic 
refinement creates blocks and interfaces of one level higher. When at some time 
during the simulation the grid for discretisation of (2.5) is as shown in Fig. 2a, a 
series of coarser grids for the multi-grid process is created by unretining sequentially 
all blocks of the highest level, see Figs. 2b-f. The level of each of these grids is 
defined as the highest level occurring among its composing blocks. Storage is effec- 
ted by numbering linearly all blocks of level 1, of level 2, etc. All x-interfaces (i.e., 
interfaces perpendicular to the x-axis) are also numbered linearly as are the y-inter- 
faces. Though required for consistent notation, subscripts x or y for the interfaces 
are suppressed in this paper. 

Blocks and interfaces in the discretisation grid are called fine; all blocks and 
interfaces in the other grids, which do not occur iii the discretisation grid, are called 
coarse. Note that there can be fine blocks of ail levels. 

When the side of a fine block consists of two or more fine interfaces, the side and 
interfaces are called green [2]; e.g., in Fig. 3b there are two green interfaces and one 

!IFH 
FIG. 1. The basic refinement. 

5x1 77’1.10 
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a b 

FIG. 2. The discretisation grid (a) and the coarser grids to be used in the multi-grid process. 
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FIG. 3. Neighbour pointers jn and in. 
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FIG. 4. Descendant pointers if and ,$ 



146 SCHMIDT AND JACOBS 

green side. A point common to four blocks of the same level is called a regular node. 
If the four adjoining blocks are not of the same level, we call the node green. 

The pointers are: Neighbour pointers: 

- jn( 1, i), . . . . jn(4, i) are the numbers of the four interfaces, of the same 
level, neighbouring to block i, in the order indicated in Fig. 3a. 

- in (1, j), in(2, j) are the numbers of the two blocks neighbouring to inter- 
face j, in the order indicated in Fig. 3b. 

The neighbours jn( 1, i), jn(3, i), and in( 1, j) are called positive neighbours, the 
others are negative ones. 

Descendant pointers: 

- is(i), . . . . if(i) + 3 are the four sons of block i. 

- $(j), J(j) + 1 are the two sons of interface j. 

The order of the sons is indicated in Fig. 4. For fine blocks and interfaces we have, 
respectively, if(i) = 0 and jf(j) = 0. An interface, created by refinement, is part of a 
coarse interface (i.e., “interface-born”), or it is in the middle of a coarse block (i.e., 
“block-born”). Only the interface-born interfaces are in the range of the pointer JX 

4. MIXED FINITE ELEMENT DISCRETISATION 

For discretisation of the elliptic part on grids in the class of Section 3 (e.g., 
Fig. 2a) we introduce the lowest order mixed finite element discretisation by Raviart 
and Thomas [ 131. 

The elliptic part consists of 

cq5 + vu =‘q 

vfj+wu=o 

(4.1) 

(4.2) 

for x E 52, with 

u.v=o (4.3) 

for x E XJ. Here w  (k-l of (2.5)) is assumed to be positive and bounded away from 
zero. The compressibility c is either positive and bounded away from zero or c z 0. 
For c - 0, q satisfies Jn q = 0 and Jn 4 = 0 is assumed to ensure uniqueness. 

With introduction of the spaces L*(Q), 

with norm 

H={uIu,,Uy,VuELz(S2),u.v=Oona0} (4.4) 

IlullK= luE,+ IWp (4.5) 
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and the product space A’= L2 * H, and under the assumption that q is sufficiently 
smooth, equivalent variational formulations of (4.1 k(4.3) hold. 

For c > 0, the unique minimum of 

f(h u) = s, M2 + wu. u) (4.6) 

in the closed affine subspace of X 

X,, = ((4, u) E Xl (4.1) holds} (4.7) 

is attained as the unique solution of (4.1)(4.3). 
For c = 0, the unique minimum of f(u) is the closed afhne subspace of H 

H,= (uEHl(4.1) holds) (4.8) 

is attained in a point u to which a unique 4 satisfying (4.2) and I&=0 may be 
associated, so that (~5, u) is the unique solution of (4.1)-(4.3). 

In the sequel we will switch from the differential formulation (or later, after 
discretisation, from the difference formulation) to the minimisation formulation and 
vice versa as need prescribes. 

For the discretisation of scalar quantities we introduce !PJx, y) as the indicator 
function of block i. For vector quantities we use Oj(x, y): the direction of Oj(x, y) 
is that of the x- or y-axis (perpendicular to interface j); its length is 1 on‘interface j, 
0 on the others, and is obtained by linear interpolation in the x- or y-direction in 
the blocks, see Fig. 5. The known quantities are discretised by 

0 1 
-1 

ci=af f. Yi c>o 
f2C 

=o c=o (4.9b) 

Y  

/ x 

FIG. 5. The x-component of 0,; its y-component is identically zero. 
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and 

w,k = 
I 

w@j’@k, (4.9c) 
R 

where i runs through all blocks and where j and k run through all interfaces. The ai 
is the area of block i. 

The discrete approximation of the unknowns is: 

4”txv Y) = 1 4ic, yi(x~ Y)llaicCx2 Y)L c>o 

c=o 

(4.10a) 

(4.10b) 

and 

&‘(x, y) = 1 ujOj(x, y), with uj = 0 if interface j lies on 8Q and 

uj = uk if interfaces j and k are parts of the same green side g. (4.11) 

The summation in (4.10) is over all blocks and in (4.11) over all interfaces. 
In order to discretise (4.1), we substitute (4.10)-(4.11), multiply by !Pi, and 

integrate over 52. This results in 

cidi + C ( + )hjuj = qi7 (4.12) 

where i runs through all blocks, and where the summation over j is over all inter- 
faces neighbouring to block i. The h, is the mesh size of interface j and ( f ) 
represents + for positive neighbours and - for negative ones. Equations (4.12) are 
equivalent to 

cqsd+Vud= q (4.13) 

with 

(4.14) 

since all terms in (4.13) are blockwise constant, as follows from the construction of 
4d and from the constraints in (4.11). 

Let Xd and Hd be the tinite dimensional subspaces of X and H of functions of the 
form (4.1Ok(4.11). XG and Hi are the subspaces of Xd and Hd constrained by (4.12). 
Then X$ and Hi are subspaces of X, and H,. 

To define discrete approximations to (4.1)-(4.3) we minimise f in X$ (c > 0) or 
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Hi (c = 0). Introducing the vectors @ = {di}, U= {ui}, Q = {qi}, the diagonal 
matrix C = diag{ c,}, and the sparse matrices W = { wik} and D with elements 

d,= +hi, if interface j is a positive neighbour of block i, 

= -hi, if interface j is a negative neighbour of block i, 

= 0, otherwise, (4.15) 

we may write the constraint (4.12) as 

C@+DU=Q (4.16) 

and the functional f(&‘, u”) becomes 

F(@, U)=(C@.@)+(WU.U). (4.17) 

Denoting 

H = { U 1 U satisfies the constraints in (4.11)) 

X={@}*H 
(4.18) 

and the affine subspaces of H and X defined by (4.16) as H, and X,, the 
minimisation is formulated as the minimisation of F in (4.17) within H, (c = 0) or 
X, (c > 0). The unique minimum is attained at the solution of the system consisting 
of the constraints in (4.1 l), of (4.16), and of 

-C d,#i+C wjkuk=O 
i k 

for each non-green interface j and 

(4.19a) 

1 { -~d~di+~WjkUi)=O (4.19b) 
icg i k 

for each green side g. Equations (4.19) are to be considered as the discretisation of 
(4.2). The sparsity pattern follows from (4.15). 

Let h be the maximal mesh size in the grid and let superscript h denote 
discretisation on the regular grid with mesh size h in the whole region a. From 
standard finite element error estimates (for c =O, see [13]), we have O(h)- 
approximation in the L2 and H-norms for the solution (@, uh) to the solution (& a) 
of the continuous problem with right-hand side 4. Because of the minimisation 
principle and the inclusions Xi c Xi c X, and Hi c Ht c HG, the approximations 
(&‘, u”) (c > 0) and ud (c = 0) are as good at least. For c = 0, O(h)-approximation 
for 4” holds as well, because the Brezzi condition between Lf and Hd holds 
uniformly for all regular and locally relined grids (according to extension of the 
proofs in [13]). As the additional error caused by the shift from q to 4 can be 
estimated to be O(h) too, consistency of O(h) holds for the discretisation method. 
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5. MULTI-GRID SOLUTION 

In the previous section the computation of the discrete fields (@, u) has been for- 
mulated as the minimisation of F in (4.17) within X,. Here we &xc&e an iterative 
solution process which 

1. transforms a guess (@ , (‘) U(O)) E X into an admissible initial value 

(G”‘, U”‘)EXQ. 
2. constructs updates 

by reducing F in afline subspaces 

(O(@, U’“‘) + Xb”’ c x,. 

In order for this iterative process to converge it is sufficient that the Xg) sweep 
cyclically through a finite number of relaxation subspaces X0,, with the property 
0, x0,, = X0, as follows from the theorem in Appendix A, which is essentially the 
Ostrowski-Reich theorem as formulated by Varga [ 143. 

As already begun in the notations above, throughout the first part of this section 
we will consider the compressible case c > 0 in detail. The non-trivial modifications 
required for c = 0 are postponed till Subsection 5.2. In Subsection 5.1 we define the 
relaxation subspaces X0,, which constitute the multi-grid method proper. In Sub- 
section 5.3 convergence rates for c = 0 are presented. To accelerate convergence 
special relaxation subspaces of Ho are added to the set of Ho,, (the analoges of X0,, 
for c = 0). 

5.1. Multi-Grid for Compressible Fluids (c > 0) 

5.1.1. Multi-Grid Definitions 

In order to specify a multi-grid choice for the relaxation subspaces XO,m, we will 
first introduce multi-grid operators and matrices. 

For each coarse grid Z, 1~ 1~ k, the prolongation is a mapping from functions on 
the coarse grid to functions on the discretisation grid. Since the discretisation grid is 
obtained from the coarsest one by basic refinement only, it is sufficient to define 
prolongation for this basic refinement. The functions Y and 0, introduced in 
Section 4, each induce a prolongation: 

Prolongation P, for vectors associated with blocks, 

4Cc4i9 (5.1) 

where i is the number of the coarse block and i’ = if(i), . . . . if(i) + 3 runs through its 
sons, see also Fig. 4. 
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Prolongation P, for vectors associated with interfaces: For interface-born 
interfaces, 

Uf = u,, (5.2) 

where j is the number of the coarse interface and j’ = j(j), jf(j) + 1 runs through 
its sons. For a block-born interface the value is the average of the two neighbouring 
parallel interfaces of the same level. 

For line blocks and interfaces in grid 1 the prolongations are the identity 
mapping. The prolongations can be represented by matrices P$’ and Pt’, where the 
superscripts k and I are suppressed when there is no risk of confusion. 

The restriction is a mapping from the discretisation grid to the coarse grid 1. It is 
(an approximation of) the generalised inverse of the prolongation: 

Restriction R, for vectors associated with blocks: 

(5.3) 

Restriction R, for vectors associated with interfaces: 

u, = 4 1 ujc. (5.4) 

We again use matrix notation RT and RLk, where the superscripts are suppressed 
whenever possible. The products R, P, and R, P, equal the identity mapping and 
R, = 4 Pt. 

Consistent with (4.10), which makes cd blockwise constant, we introduce for the 
potential @ a pologation P, and a restriction R,, which depend on c. For each grid 
I we have a diagonal matrix C’ with elements given by (4.9). Then 

P;= (Ck)-‘(R$)*C’, R:‘= (C’)-‘(Pk,‘)*Ck. 

The matrix Ck determines the matrix C’ by 

(5.5) 

as follows from (4.9) (summation is over the four sons of block i). The matrix C’ 
can be written as 

cl= P$CkP 4’ (5.7) 

For coarse grid 1 we form the matrices 

D’= P$ DkP,, (5.8) 

w’= P,* WkP”, (5.9) 
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and the vector 

Qi = P$Q”. (5.10) 

The functional F of (4.17) is indexed for its level 

F’( @‘, U’) = (C’@’ . @‘) + ( W’U’ . U’) (5.11) 

and also the spaces Xi and Xl,,. Note that the quantities in (5.7)-(5.10) are equal to 
the quantities obtained by direct application of the discretisation of Section 4 to 
the grid 1. This is a very favourable feature for a program with dynamic adaptation 
of the grid, see Section 6. 

For later use we mention the equalities 

C’R, = P$Ck, D’R, = P$ Dk (5.12) 

CkP, = $ P, c’, DkP, = d P, D’. (5.13) 

5.1.2. Complete Coarse Grid Correction (I < k) 

Let (@‘, Uk) be in X5,. Then (@‘= R,Qk, U’= R,Uk) is in Xl,‘, as follows from 
(5.12). To improve on (Qk, Uk) as a solution of the system (4.11), (4.16), (4.19), we 
minimise Fk within 

{(@“, Uk)+(P4 A@‘, P, AU’)I(A@‘, AU’)EX;}, (5.14) 

which indeed defines an afline subspace of XkQk, as follows from (5.13). The 
minimisation of Fk is equivalent to the minimisation of 

F’( 8’, 0’) - 2( A T’, o’), (5.15) 

where 

AT’= p,*(Dk*Qk - WkUk) - (D’*@‘- W’U’) (5.16) 

with (@, 8’) in the atline subspace XL’. The solution satisfies system (4.11), (4.16), 
and (4.19) for level 1 with a right-hand member AT’ in (4.19). 

The update (bk, ok) of (@“, Uk), and its restriction on the coarse grids is given 
by 

a+ = @” + P,( 6,’ - @‘), Om= urn+ P,(8’- U’) (5.17a) 

for I < m < k, by (@, 0’) on grid 1, and by 

@” = R, @, @GR,~’ (517b) 

for l<m<l. 
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5.1.3. Relaxation on level 1 (ldk) 

It is obvious that with the procedures of Section 51.2 we will also obtain 
improvements of (@, U”) and representations of the improved solution on the 
coarser levels according to (5.17), if we restrict the space for (&, 0’) to a proper 
afftne subspace of Xl,’ (also for 1= k). Let Q:,, be a connected subdomain of Q 
consisting of blocks in grid 1. Let Xk,Q;,, be the subspace of Xh defined as 

((~‘,dU’)~X~I(d~‘,dU’)=Oinsz/af,,}. (5.18) 

The determination of the update (&, 8’) is now reduced to relaxation in a!,,,. This 
means to solving the equations of the level 1 discretisation (4.11), (4.16), and (4.19) 
(with right-hand member AT’) which apply to the interior of 52:,,, while keeping 
(@‘, U’) fixed in a/@,, (in particular, U’ on the boundary CY&,, is fixed). It should 
be noticed that it is not necessary to recompute AT’ after each relaxation on level 1, 
because the update to AT’ in (5.16) 

P:(Dk*P, A@‘- WkP, AU’) - (D’* A@‘- W’ AU’) = 0, (5.19) 

according to the definitions (5.8k(5.9) of D’ and W’. (Actually, none of the AT”’ 
with 1 <m d k changes.) Therefore, in a sequence of level 1 relaxations we may 
accumulate the corrections in (&‘, 8’) and have only to perform the update (5.17) 
when leaving level 1. 

5.1.4. Relaxation Subspaces 

As relaxation subspaces Xi,,, for the iterative process we choose the spaces 
Pk’(X&J which are related to the sZ[,, consisting of four blocks of level 1 with one 
common regular node (denoted as &,& for 1= 2( 1 )k, and to Qii,,, = 51 for 1= 1. 
We cyclically sweep through them in the order 1= 1( l)k, while the order at level 1 is 
determined by the adaptive data structure of the grid and is rather arbitrary. This is 
called point relaxation. The sum of these relaxation spaces is Xi, because the Qk 
can be eliminated by (4.16) so that the minimisation becomes minimisation over Uk 
only, and because each green side and non-green interface appears as an internal 
interface of one of the 52kode at least. In 3D the a:,,, should be either the union of 
four blocks having a common edge, or the union of eight blocks having a common 
node; both sets span Xt,,. 

5.1.5. Initialisation 

A guess (@ , (‘) U(O)) E Xk (so satisfying the constraints in (4.11); usually we take 
the fields at the previous time level adapted to the present grid) must be transfor- 
med into a value (Q(l), U”))EX~ ok (so satisfying all constraints). For c > 0 this first 
update does not differ from the relaxation updates described in 5.1.3 and 5.1.4: after 
one sweep over 1= 1(1 )k, the solution and its restrictions on coarse grids given by 
(5.17b) satisfy 

C’@’ + D’U’ = Q’, 1 <l<k (5.20) 
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as follows from (5.12). The value of the functional F may increase at the transition 
from (CD”‘, U(O)) to (0 , (‘I U(i)), but is reduced in the subsequent iterative process. 

5.2. Multi-Grid for Incompressible Fluids (c = 0) 

The multi-grid relaxation for incompressible fluids is obtained from the 
relaxation in subsection 5.1 by taking the limit c constant +O. Then P, = P, and 
R, = R,. Existence of a solution of the set of equations in sZ[,, (see 5.1.3) is a 
consequence of U’ E Hb, . For uniqueness of the $’ we prescribe 

c4J; - di) = 0 (5.21) 

as follows from taking c constant -0. In (5.21) the summation is over the blocks in 
QL 

To ensure convergence of the process we will show in 5.2.1 that em Ho,, = Ho 
for the subspace associated with the series of SZfiode formed in 5.1.4. (Note that for 
c = 0 we cannot eliminate Gk by (4.16), and (4.16) is indeed a constraint on Wk.) In 
5.2.2 we give necessary modifications for the initialisation. 

5.2.1. Completeness of the Relaxation Subspaces 

For c = 0, the regions Qfiode as introduced in 5.1.4 are associated with the sub- 
spaces 

{ P,AU! AU/E H&, AU’= 0 in Q/sZ’,,,,} (5.22) 

of Hi, and we have to show that all spaces of the form (5.22) span Ht. 
For each UEH~ there is a stream-function $“(x, y), zero on &Z?, so that 

Ud(X, Y) = v x ICld(x, Y)Z, (5.23) 

where ud is the approximation (4.11) and z is the unit vector in the z-direction. The 
Ic/” follow from the ud by integration from LX2 into Q of the component of ud normal 
to the path of integration. The $” is a first-order polynomial in x or y on each 
(non-green) interface and on each green side, and is bilinear in each block. This 
implies a bijection between the solenoidal fields ud of the form (4.11) and these 
bilinear stream functions II/” vanishing on 80. 

Each I/” can be written as 

tid(X9 Y) = C ll/i ei(-? Yh (5.24) 

where the sum is over all interior nodes and where the bilinear approximation 
functions ei are one in node i and zero in the others. The flow field V x eiz is called 
an eddy current. If the support of an eddy current and associated stream function 
equals the closure of one of the, Qfiode, the eddy current and stream function are 
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called elementary. All other eddy currents and their stream functions are called 
green and their support is denoted by SZireennode, where 1 is the maximum of the 
levels neighbouring to node i, see Fig. 6. 

The elements of the spaces (5.22) represent elementary eddy currents. It follows 
from (5.24) that they span HE, if we show that each green ei is the sum of elemen- 
tary stream functions. 

Let the support of a green ei be the union of blocks of levels k and k - 1. Then 
this support is contained in the closure of some a”,,;:. Let e’, be the elementary 
stream function on sZh,;d. Then 

ei = i?, -1 di(xc, y;,) e?, 
i' 

(5.25) 

where the summation is over all nodes in Bk,;,:. Equation (5.25) shows that ei is the 
sum of elementary stream functions. By induction the proof follows for green e, with 
a support involving more levels. 

5.2.2. Initialisation 

For c = 0, the initialisation of Section 5.1.5 would be wrong, since the set of 
equations encountered on an afiode would generally not admit a solution. Therefore 
we present a modified initialisation. 

Instead of sweeping through all SZiode, we restrict the initialisation sweep to Sz’ 
and the SZfiode composed of blocks with a common father block. For 1= 1 the 
constraint equations have a solution, since the sum of the entries of Q’ equals that 
of Qk, which is zero. If on level f, U’ satisfies the constaints (5.20), then on the next 
level we have 

(~2 ‘J)*(Q’+ 1 -p+‘U’+‘)=() (5.26) 

FIG. 6. Solid lines: elementary eddy current in f24,,,,; dashed lines: green eddy current in CL&, node, 
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as follows from (517a) and (5.12). Equation (5.26) implies that the set of equations 
for each mk$e proposed has a solution. By induction it follows that one sweep 
results in a U(l) satisfying the constraints. 

5.3. Convergence Rates 

In this section a summary of numerical results for the convergence rate in a 
number of examples with c = 0 is given. 

To measure the convergence rate we use the spectral radius of the error 
amplification matrix associated with one cycle of the multi-grid process. To 
compute the spectral radius numerically we put Q equal to zero, take an initial 
guess U(l) # 0, and compute iterative approximations UC”’ to the solution U= 0. 
The spectral radius is recovered from 

p= lim pn; Pn= II~n+llIIII~nll~ (5.27) 
n-m 

where II UII = ( WU . U) “’ All tables give values of ri: = - lo log p, which represents . 
the number of significant decimal digits of the solution computed per multi-grid 
sweep. 

In most cases P,, had become steady at n = 50; then we display p = pSo. In some 
cases pn was fluctuating with a typical period near 2 or 3; then we display 
P=max40...50Pn. 

The computational domain 52 for each example is { 0 < x < 8 A 0 -C y < 8 } and 
the permeability k = wP ’ is a diagonal tensor with diagonal elements k, and k, 
given as functions of x and y. We consider four examples, each containing a 
parameter 1. 

(a) Two subregions, Q2,= {x<2 vy>6}, sZ,=i2/52, in Q,:k,=k,=l; in 
Q,:k, = k,, = /I. 

TABLE I 

Convergence Rate of Point Relaxation for 
Constant Isotropic permeability on Regular Grids 

k=2 k=3 k=4 k=S 

1 0.65 0.73 0.75 0.73 
2 2.0 1.3 1.2 1.1 
3 2.6 1.6 1.4 1.2 
4 3.0 1.8 1.6 1.5 
5 3.4 1.9 1.7 1.6 

Note. n,: number of sweeps through each grid; k: level of dis- 
cretisation grid. 
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TABLE II 

Convergence Rate of Point Relaxation on Regular Grid 

I a b C 

10-5 0.49 0.27 0.13 
lo.-’ 0.49 0.27 0.13 
10-1 0.63 0.50 0.25 
1 0.75 0.75 0.75 

10 0.75 0.44 0.44 
10’ 0.74 0.27 0.23 
105 0.63 0.26 0.23 

Nore. n,= 1, k=4. 

(b) Three subregions, Q,={x>3 A y<5}, Q2,={(x<2 A y>l) v (x<7 A 
~6% Q,=W-Jt ~0,); in Q, and L?,:k,=k,= 1; in SZ,:k,=k,=A. (Note that 
for A > 1, 0, represents a “channel” for fluid flow, and for A< 1 it represents a 
“barrier.“) 

(c) Three subregions, 52, = (x>6.4+ 1.6 * (y/S)*}, Q2= {y>6.4+ 1.6 * 
(x/S)*), Q, = Q/(Q, u Q,); in Q, and Q,:k, = k, = 1; in G!,:k, = k, = II. (Note that 
Q, is a domain as occupied by a water tongue at breakthrough in certain live-spot 
displacements.) 

(d) k,= 1, k,=A. 

The rate of convergence for constant isotropic permeability (A = 1 in all the 
examples) can be read from Table I, if the coarsest grid is 2 * 2 and the dis- 
cretisation grid is regular of level k. The number of sweeps n, on each grid 1 varies 
from 1 to 5 and k varies from 2 to 5. 

TABLE III 

Convergence Rate for Anisotropic Permeability 
(Ex. d) on Regular Grid 

1 
Point 

relaxation 
Line 

relaxation 

10mS 0.012 0.65 
lo-3 0.014 0.78 
10-l 0.15 1.2 
1 0.75 1.4 

10 0.14 1.2 
103 0.013 0.78 
105 0.012 0.65 

Note. ns= 1, k=4. 
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TABLE IV 

Convergence Rate on a Locally Refined Grid 

a b 
Point relaxation 

10-5 0.41 0.43 0.000089 0.052 
10-3 0.41 0.43 0.0027 0.053 
10-J 0.48 0.45 0.090 0.14 
1 0.45 0.45 0.45 0.71 

0 0.28 0.42 0.10 0.59 
10’ 0.13 0.36 0.0027 0.30 
105 0.13 0.36 o.OcQ13 0.25 

C 

C 

Green 
eddy currents 

Now. n,=l, [k=6]. 

Rapid convergence on regular grids is obtained also when strong contrasts are 
present in the permeability, as in examples a, b, and c, see Table II. Here we have 
set n,= 1 and k=4. 

Strong anisotropy requires line-relaxation. We form large relaxation spaces on 
level 1 as in Section 5.1, by combining all S2fiode which have their node on some 
(x- or y-)grid line into an Qii,,. With line-relaxation rapid convergence is retained, 
as appears from Table III. Here also n, = 1 and k = 4. 

Lastly we consider locally relined grids. Table IV gives results for the grid of 
Fig. 2a, with n, = 1 and permeability as in (a), (b), and (c). In the first three 
columns we show the results of point relaxation. 

The grid in Fig. 2a is “adapted” to the permeability of example c. It is a grid 
which appears in the adaptive grid solution of a live-spot displacement which 
features a water tongue, see Section 6. Note that large permeability gradients 
coincide with large “mesh-width gradients.” From the third column of Table IV we 
see that the convergence rate of point-relaxation deteriorates for extreme 1. 

To restore the convergence rate we add the relaxation spaces associated with 

52;ree"node' introduced in 52.1. For arbitrary grids these regions may become quite 
complex as may be seen in Fig. 6, where only three eddy currents of such type are 
shown. When the grids are constrained by the condition that the levels of 
neighbouring blocks differ by not more than one, this complexity is very much 
moderated. With the above extension of the set of relaxation spaces we obtain the 
acceptable convergence rates of the last column in Table IV. 

6. DYNAMIC GRID REFINEMENT 

Good representation of the solution requires updating the grid at certain 
moments during the simulation process. The updates are executed at fixed 
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simulation time. In this section we describe decision strategies for (un)relinement. 
The method is assessed on the basis of experimental results. 

The split of the equations of reservoir simulation into a hyperbolic part 
(Eqs. (2.5a), (2.5b)) and an elliptic part (Eqs. (2.5c), (2.5d)) entails two different 
grid updates: for better approximation of quantities associated with the hyperbolic 
part (s,, II”) and with the elliptic part (p, II), respectively. 

Hyperbolic Grid- Update 

The hyperbolic grid-update aims at better approximation of the s,. It refines and 
unrelines the grid according to local indicators, while the overall accuracy is deter- 
mined by the total number of line blocks, which is the given input. 

At the computation of the indicators we use the explicit discretisation of (2.5a), 
(2.5b): 

2 (s::~ - sn,;) = 4n.i - 1 ( + ) hjun.j 
I 

u,,j= (k,k-‘)juj. (6.2) 

Here i runs through all fine blocks; s,,~ is the average and qn.i the integral over block 
i and ai is the area. The u,,~ is the average normal value of u” on interface j. The 
summation in (6.1) is over all line interfaces neighbouring to block i, see also (4.12). 
The evaluation of the coefficient preceding uj in (6.2) is one-point upstream, u, is 
known from the elliptic part. The time step At is the residence-time of fluid in a 
block, minimised over all blocks, and multiplied by a Courant-Friedrichs number. 

The indicator Ei, belonging to block i, is computed as 

Ej = max[max Z(S,,~, s,;) - min Z(S,,~, s,J]. 
n i J 

(6.3) 

Here j runs through the value i and the numbers of all upstream neighbouring 
blocks of block i, as determined by the sign of expression (6.2). The value of 
[(s,~, s,,~) is s,,~ for j= i and is otherwise computed as follows: 

- associate the value of s,,~ (resp. s,,;) with the centre of block j (resp. i); 

- interpolate linearly between these points; 

- evaluate at the edge of block i. 

For blocks with injection wells, the extremes within the square brackets in (6.3) 
also run over the injection “saturations.” 

Next, we compute tolerances tolf and tol;. Blocks with Ei > tol,+ and of level 
less than a given ml,, will be relined and blocks with E, < tol; will be unrefined. The 
values of tol,+ and tol; follow from: 

- A given value of tol,+/tol; ( =2, typically); 

- A lower bound tol:- for tol,YP; 
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- the ml, is usually less than ml,. Typical objects for a fine pressure-grid are 
wells, There, however, the effect of local mesh refinement is easily shadowed by the 
effect of a good well-model, which justifies low values of ml,. 

- the time-interval between elliptic updates is usually much larger than that 
between hyperbolic updates. This is a consequence of the evolution in time of the p 
and u fields and of the s, fields. 

7. EVOLUTION OF THE SOLUTION PROCESS 

The complete process of computing grids, saturations, flows, and pressures, as 
evolving with simulation time, is surveyed. We restrict ourselves to constant initial 
saturations, satisfying (2.lc), given on regular initial grids. 

The computation starts with an elliptic and an hyperbolic grid-update. After 
these updates the grid has, in general, refinements near the wells only. 

The process proceeds by executing timesteps of the form (6.1~(6.2). The value of 
the timestep, denoted by dt,, is computed from a Courant number C,, less than 1. 
As the region of small blocks in the grid has to keep pace with moving shocks, a 
reasonable time unterval dtgh for application of a hyperbolic grid-update can be 
computed from a Courant number Cgh which is near to 1. So the number of 
timesteps (6.1 k(6.2) between two hyperbolic gridupdates is [C&,1. 

The pressure p and the flow u are updated after lapses At, of simulation time. 
Elliptic grid-updates are applied after lapses At,. 

The values of C,, Cgh, At, are fixed input satisfying C, ,< Cgh and At, <At,,. The 
At, is an order larger than the average value of At,. 

8. EXAMPLES 

We have tested the method on a variety of problems typical in reservoir 
simulation. Here we give the results for water-oil displacement in a five-spot well 
pattern. 

In the region O<x<l, O<y<l, there is one well at x=y=O+ and one at 
x = y = l- with constant (water) injection and production rate, respectively. There 
are two phases (N= 2): oil (n = 1, red), which initially saturates the region, and 
water (n = 2, blue). Permeabilities depend on the saturations only and are given as 
kl=s,, k,=Ms,, where M is a mobility ratio. These straightline relative 
permeability curves are not common in practice, but they give the possibility 
of judging the results for a pure rarefaction wave (M> l), a pure contact- 
discontinuity (M= l), and a pure shock (MC 1). 

We have run the program with ml,= 5 and ml,,= 6, while aiming at 576= 242 
tine blocks in the hyperbolic grid-update. The other numerical parameters are 
C, = 0.9, C,, = 0.9, At, = 0.01, At,, = 0.1. The average value of At, appeared to be 
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FIG. 7. Oil/water displacement in a he-spot well pattern: (A) M= 2.0, t =0.425, 595 blocks; 
(B) M = 2.0, t = 0.85, 577 blocks; (C) M = 1.0, t = 0.425, 586 blocks; (D) M= 1.0, t = 0.85, 580 blocks; 
(E) M= 0.5, t = 0.425, 580 blocks; (F) M = 0.5, t = 0.85, 589 blocks. 

0.00084. Time intervals are in dimensionless time, which equals injected relative 
volume. 

The results are displayed in Fig. 7. A simulation over 0 < t < 0.85 requires 100 s 
CPU-time on a Cray-1. For comparison, Fig. 8 gives results on a regular grid with 
576 blocks. 
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A B 

FIG. 8. Same as Fig. 7, but with a regular grid with 576=24* blocks. 

For M= 2 (Figs. 7a, b and 8a, b), the saturations in the exact solution are 
continuous functions of the space coordinates. 

For M= 1 (Figs. 7c, d and 8c, d), the saturations in the exact solution adopt the 
values 0 and 1 only. The front is a contact discontinuity, the width of which 
increases owing to numerical diffusion. For model equations, discretised (with small 
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Courant-Friedrichs number) on regular grids, the width of the front is known to be 
proportional to h . ‘I2 The smallest mesh width in Fig. 7 is 0.375 times the meshwidth 
in Fig. 8, predicting a reduction of the front-with by 0.6. Comparison of Figs. 7c 
and 8c shows that the results reach this reduction. Observe that the water tongue 
near the production well is much better resolved in Fig. 7d than in Fig. 8d. 

For M= 0.5 (Figs. 7e, f and 8e, f), the exact solution again displays 0 and 1 only. 
Now the front is a stable shock. Numerical diffusion is cancelled by the stability of 
the shock, resulting in an effective front-width not more than two gridblocks, as can 
be seen from Figs. 7e, f and 8e, f. Hence the front-width is proportional to h. 
Observe that the tongue is again seen better in Fig. 7f than in Fig. 8f. 

APPENDIX A: A THEOREM FOR SECTION 5 

THEOREM. Let H be a finite dimensional Hilbert space (norm: [[.I[, inner product 
(., .) and let V,, . . . . V, _ , be subspaces, the sum of which equals H. Let x,, E H be 
arbitrary and 

X n+l =x,-vv,, 64.1) 

where v, is such that 

V,E vm, n = m mod(M) (A-2) 

II-G+ 1 II < II% + VII, VE v,. (A.3) 

Then we have 

lim x, = 0. (A.4) n-+m 

Proof: The (lx,, (I form a decreasing bounded series and, hence, form a con- 
vergent series. The definition of v, implies 

(x,, v) = (v,, v), VE v,. (A-5) 

It follows that 

(v,, &I) = ml, 0,) - (vm v,) = IIX, II2 - II&I+ 1 II2 + 0 for n+ co. (A.6) 

For fixed v E V, we have from (A.5) 

I(x,~ VII = I(%, VII G IIV” II . IbIL n = m mod(M) (A-7) 

and from (A.6) 

(X”, V)‘O? n + co, n = m mod(M). (A.81 

(A.l) and (A.6) imply 

lb, - Xd II + 09 n, n’-+ co; In-n’1 <M, (A.91 
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with which (A.8) gives 

(40 u) + 0, n+co. (A.lO) 

Since each vector in H can be written as a finite sum of vectors in the I’,,,, (A.lO) 
holds for all vectors u E H, and this implies (A.4), since H is finite dimensional. 
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